4.6 Article

Plasmon damping below the Landau regime: the role of defects in epitaxial graphene

期刊

NEW JOURNAL OF PHYSICS
卷 12, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/12/3/033017

关键词

-

向作者/读者索取更多资源

The sheet plasmon in epitaxially grown graphene layers on SiC(0001) and the influence of surface roughness have been investigated in detail by means of low-energy electron diffraction (LEED) and electron energy loss spectroscopy (EELS). We show that the existence of steps or grain boundaries in this epitaxial system is a source of strong damping, while the dispersion is rather insensitive to defects. To the first order, the lifetime of the plasmons was found to be proportional to the average terrace length and to the plasmon wavelength. A possible reason for this surprisingly efficient plasmon damping may be the close coincidence of phase (and group) velocities of the plasmons ( almost linear dispersion) with the Fermi velocity of the electrons. Therefore, uncorrelated defects like steps only have to act as a momentum source to effectively couple plasmons to the electron-hole continuum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据