4.6 Article

Weak localization and transport gap in graphene antidot lattices

期刊

NEW JOURNAL OF PHYSICS
卷 11, 期 -, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/11/9/095021

关键词

-

向作者/读者索取更多资源

We fabricated and measured antidot lattices in single layer graphene with lattice periods down to 90 nm. In large-period lattices, a well-defined quantum Hall effect is observed. Going to smaller antidot spacings, the quantum Hall effect gradually disappears, following a geometric size effect. Lattices with narrow constrictions between the antidots behave as networks of nanoribbons, showing a high-resistance state and a transport gap of a few mV around the Dirac point. We observe pronounced weak localization in the magnetoresistance, indicating strong intervalley scattering at the antidot edges. The area of phase-coherent paths is bounded by the unit cell size at low temperatures, so each unit cell of the lattice acts as a ballistic cavity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据