4.6 Article

Variational ground states of the two-dimensional Hubbard model

期刊

NEW JOURNAL OF PHYSICS
卷 11, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/11/7/075010

关键词

-

资金

  1. Swiss National Science Foundation through the National Centre of Competence in Research 'Materials with Novel Electronic Properties-MaNEP'

向作者/读者索取更多资源

Recent refinements of analytical and numerical methods have improved our understanding of the ground-state phase diagram of the two-dimensional (2D) Hubbard model. Here, we focus on variational approaches, but comparisons with both quantum cluster and Gaussian Monte Carlo methods are also made. Our own ansatz leads to an antiferromagnetic ground state at half filling with a slightly reduced staggered order parameter (as compared to simple mean-field theory). Away from half filling, we find d-wave superconductivity, but confined to densities where the Fermi surface passes through the antiferromagnetic zone boundary (if hopping between both nearest-neighbour and next-nearest-neighbour sites is considered). Our results agree surprisingly well with recent numerical studies using the quantum cluster method. An interesting trend is found by comparing gap parameters 1 (antiferromagnetic or superconducting) obtained with different variational wave functions. 1 varies by an order of magnitude and thus cannot be taken as a characteristic energy scale. In contrast, the order parameter is much less sensitive to the degree of sophistication of the variational schemes, at least at and near half filling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据