4.6 Article

Creating and verifying a quantum superposition in a micro-optomechanical system

期刊

NEW JOURNAL OF PHYSICS
卷 10, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/10/9/095020

关键词

-

资金

  1. National Science Foundation [PHY-0504825, PHY05-51164]
  2. Marie-Curie [EXT-CT-2006-042580]
  3. Fundamenteel Onderzoek der Materie (FOM)

向作者/读者索取更多资源

Micro-optomechanical systems are central to a number of recent proposals for realizing quantum mechanical effects in relatively massive systems. Here, we focus on a particular class of experiments which aim to demonstrate massive quantum superpositions, although the obtained results should be generalizable to similar experiments. We analyze in detail the effects of finite temperature on the interpretation of the experiment, and obtain a lower bound on the degree of non-classicality of the cantilever. Although it is possible to measure the quantum decoherence time when starting from finite temperature, an unambiguous demonstration of a quantum superposition requires the mechanical resonator to be in or near the ground state. This can be achieved by optical cooling of the fundamental mode, which also provides a method to measure the mean phonon number in that mode. We also calculate the rate of environmentally induced decoherence and estimate the timescale for gravitational collapse mechanisms as proposed by Penrose and Diosi. In view of recent experimental advances, practical considerations for the realization of the described experiment are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据