4.6 Article

On entropy growth and the hardness of simulating time evolution

期刊

NEW JOURNAL OF PHYSICS
卷 10, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/10/3/033032

关键词

-

向作者/读者索取更多资源

The simulation of quantum systems is a task for which quantum computers are believed to give an exponential speed up as compared with classical ones. While ground states of one-dimensional systems can be efficiently approximated using matrix product states (MPS), their time evolution can encode quantum computations, so that simulating the latter should be hard classically. However, one might believe that for systems with high enough symmetry, and thus insufficient parameters to encode a quantum computation, efficient classical simulation is possible. We discuss supporting evidence to the contrary: we provide a rigorous proof of the observation that a time-independent local Hamiltonian can yield a linear increase of the entropy when acting on a product state in a translational invariant framework. This criterion has to be met by any classical simulation method, which in particular implies that every global approximation of the evolution requires exponential resources for any MPS-based method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据