4.6 Article

The trapped two-dimensional Bose gas:: from Bose-Einstein condensation to Berezinskii-Kosterlitz-Thouless physics

期刊

NEW JOURNAL OF PHYSICS
卷 10, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/10/4/045006

关键词

-

向作者/读者索取更多资源

We analyze the results of a recent experiment with bosonic rubidium atoms harmonically confined in a quasi-two-dimensional (2D) geometry. In this experiment a well-defined critical point was identified, which separates the high-temperature normal state characterized by a single component density distribution, and the low-temperature state characterized by a bimodal density distribution and the emergence of high-contrast interference between independent 2D clouds. We first show that this transition cannot be explained in terms of conventional Bose-Einstein condensation of the trapped ideal Bose gas. Using the local density approximation (LDA), we then combine the mean-field (MF) Hartree-Fock theory with the prediction for the Berezinskii-Kosterlitz Thouless (BKT) transition in an infinite uniform system. If the gas is treated as a strictly 2D system, the MF predictions for the spatial density profiles significantly deviate from those of a recent quantum Monte Carlo (QMC) analysis. However, when the residual thermal excitation of the strongly confined degree of freedom is taken into account, excellent agreement is reached between the MF and the QMC approaches. For the interaction strength corresponding to the experiment, we predict a strong correction to the critical atom number with respect to the ideal gas theory (factor similar to 2). Quantitative agreement between theory and experiment is reached concerning the critical atom number if the predicted density profiles are used for temperature calibration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据