4.6 Article

Dirac-point engineering and topological phase transitions in honeycomb optical lattices

期刊

NEW JOURNAL OF PHYSICS
卷 10, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/10/10/103027

关键词

-

向作者/读者索取更多资源

We study the electronic structure and the phase diagram of noninteracting fermions confined to hexagonal optical lattices. In the first part, we compare the properties of Dirac points arising in the eigenspectrum of either honeycomb or triangular lattices. Numerical results are complemented by analytical equations for weak and strong confinements. In the second part, we discuss the phase diagram and the evolution of Dirac points in honeycomb lattices applying a tight-binding description with arbitrary nearest-neighbor hoppings. With increasing asymmetry between the hoppings the Dirac points approach each other. At a critical asymmetry the Dirac points merge to open an energy gap, thus changing the topology of the eigenspectrum. We analyze the trajectory of the Dirac points and study the density of states in the different phases. Manifestations of the phase transition in the temperature dependence of the specific heat and in the structure factor are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据