4.6 Article

Highly water-dispersible surface-functionalized LSMO nanoparticles for magnetic fluid hyperthermia application

期刊

NEW JOURNAL OF CHEMISTRY
卷 37, 期 9, 页码 2733-2742

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nj00007a

关键词

-

资金

  1. Board of Research in Nuclear Sciences, Mumbai

向作者/读者索取更多资源

The purpose of the present investigation is to develop highly water dispersible and biocompatible La0.7Sr0.3MnO3 (LSMO) magnetic nanoparticles (MNPs), which can be used as an effective heating source for the hyperthermal treatment of cancer. LSMO MNPs are synthesized by a novel combustion technique and functionalized with oleic acid (OA). The phase transfer of OA-functionalized LSMO MNPs from non-polar to polar solvents is achieved by further interaction with betaine HCl (with mean particle size similar to 25 nm). Magnetic measurements of both coated and uncoated particles revealed their superparamagnetic nature at room temperature. The OA-betaine coated LSMO particles form a stable suspension in aqueous and physiological media, and possess a narrow hydrodynamic size distribution. Magnetic fluid hyperthermia studies clearly show the higher heating efficacy (specific absorption rate) of OA-betaine functionalized LSMO compared with bare LSMO. In addition, these functionalized LSMO nanoparticles are biocompatible with cell lines (HeLa and L929) and do not have toxic effects for further in vivo use. Specifically, the developed nanoparticles show better colloidal stability, high magnetization, excellent self-heating capacity under an external AC magnetic field and biocompatibility on L929 and HeLa cell lines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据