4.6 Article

Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation

期刊

NEW JOURNAL OF CHEMISTRY
卷 36, 期 9, 页码 1774-1780

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2nj40133a

关键词

-

资金

  1. Foundation of the State Key Laboratory of Coordination Chemistry
  2. National Natural Science Foundation of China [51072071, 51102117]

向作者/读者索取更多资源

Pt-based materials have been widely used as electrocatalysts in direct methanol fuel cells (DMFCs) due to their significant activity for methanol oxidation as well as their superior poison tolerance. In this study, a reduced graphene oxide (RGO) supported FePt alloy electrocatalyst is successfully synthesized by a facile in situ co-reduction route. The microstructure, composition and morphology of the synthesized materials are systematically investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It is shown that the as-formed FePt nanoparticles with a size of 4 nm are well spread out on the RGO sheets and as a result, re-stacking of the RGO sheets is effectively inhibited. Their catalytic performance for electrocatalytic oxidation of methanol is investigated by cyclic voltammetry and amperometric method, which indicate that the RGO/FePt catalyst exhibits much higher catalytic activity and stability than the RGO/Pt nanocomposites. It is proposed that the addition of Fe, which increases the number of Pt active sites, is responsible for the improved catalytic performance. This result implies that the prepared RGO/FePt nanocomposites have great potential applications in DMFC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据