4.8 Article

A Congenital Neutrophil Defect Syndrome Associated with Mutations in VPS45

期刊

NEW ENGLAND JOURNAL OF MEDICINE
卷 369, 期 1, 页码 54-65

出版社

MASSACHUSETTS MEDICAL SOC
DOI: 10.1056/NEJMoa1301296

关键词

-

资金

  1. National Human Genome Research Institute
  2. Intramural Research Program of the National Human Genome Research Institute
  3. European Research Council
  4. Gottfried-Wilhelm-Leibniz Program of the Deutsche Forschungsgemeinschaft
  5. Care-for-Rare Foundation
  6. German Network on Primary Immunodeficiency Diseases
  7. Jeffrey Modell Foundation
  8. Israeli Science Foundation
  9. Chief Scientist Office of the Israeli Ministry of Health

向作者/读者索取更多资源

BACKGROUND Neutrophils are the predominant phagocytes that provide protection against bacterial and fungal infections. Genetically determined neutrophil disorders confer a predisposition to severe infections and reveal novel mechanisms that control vesicular trafficking, hematopoiesis, and innate immunity. METHODS We clinically evaluated seven children from five families who had neutropenia, neutrophil dysfunction, bone marrow fibrosis, and nephromegaly. To identify the causative gene, we performed homozygosity mapping using single-nucleotide polymorphism arrays, whole-exome sequencing, immunoblotting, immunofluorescence, electron microscopy, a real-time quantitative polymerase-chain-reaction assay, immunohistochemistry, flow cytometry, fibroblast motility assays, measurements of apoptosis, and zebrafish models. Correction experiments were performed by transfecting mutant fibroblasts with the nonmutated gene. RESULTS All seven affected children had homozygous mutations (Thr224Asn or Glu238Lys, depending on the child's ethnic origin) in VPS45, which encodes a protein that regulates membrane trafficking through the endosomal system. The level of VPS45 protein was reduced, as were the VPS45 binding partners rabenosyn-5 and syntaxin-16. The level of beta 1 integrin was reduced on the surface of VPS45-deficient neutrophils and fibroblasts. VPS45-deficient fibroblasts were characterized by impaired motility and increased apoptosis. A zebrafish model of vps45 deficiency showed a marked paucity of myeloperoxidase-positive cells (i.e., neutrophils). Transfection of patient cells with nonmutated VPS45 corrected the migration defect and decreased apoptosis. CONCLUSIONS Defective endosomal intracellular protein trafficking due to biallelic mutations in VPS45 underlies a new immunodeficiency syndrome involving impaired neutrophil function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据