4.1 Article

Neurobehavioral effects of sodium tungstate exposure on rats and their progeny

期刊

NEUROTOXICOLOGY AND TERATOLOGY
卷 30, 期 6, 页码 455-461

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ntt.2008.07.003

关键词

Neurodevelopmental toxicology; Learning and memory; Emotionality

资金

  1. Defense Health Programs (DHP) reimbursable Work Unit [60768]

向作者/读者索取更多资源

The use of tungsten as a replacement for lead and depleted uranium in munitions began in the mid 1990's. Recent reports demonstrate tungsten solubilizes in soil and can migrate into drinking water supplies and therefore is a potential health risk to humans. This study evaluated the reproductive and neurobehavioral effects of sodium tungstate in Sprague-Dawley rats following 70 days of daily pre- and postnatal exposure. Adult male and female rats were orally dosed with diH(2)O vehicle, 5 or 125 mg/kg/day of sodium tungstate through mating, gestation, and weaning (PND 0-20). Daily administration of sodium tungstate produced no overt evidence of toxicity and had no apparent effect on mating success or offspring physical development. Distress vocalizations were elevated in the highest dose group. There was no treatment related effect on righting reflex latencies, however, the males had significantly shorter latencies than the females. Locomotor activity was affected in both the low and high dose groups of F0 females. Those in the low dose group showed increased distance traveled, more time in ambulatory movements, and less time in stereotypic behavior than controls or high dose animals. The high dose group had more time in stereotypical movements than controls, and less time resting than controls and the lowest exposure group. Maternal retrieval was not affected by sodium tungstate exposure and there were no apparent effects of treatment on F1 acoustic startle response or water maze navigation. Overall, the results of this study suggest pre- and postnatal oral exposure to sodium tungstate may produce subtle neurobehavioral effects in offspring related to motor activity and emotionality. These findings warrant further investigation to characterize the neurotoxicity of sodium tungstate on dams and their developing pups. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据