4.4 Article

Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set

期刊

NEUROTOXICOLOGY
卷 33, 期 5, 页码 1048-1057

出版社

ELSEVIER
DOI: 10.1016/j.neuro.2012.05.001

关键词

Neurotoxicity; Training set; Screening, Microelectrode array; Cortical culture; Network function

资金

  1. U.S. Environmental Protection Agency

向作者/读者索取更多资源

Microelectrode array (MEA) approaches have been proposed as a tool for detecting functional changes in electrically excitable cells, including neurons, exposed to drugs, chemicals or particles. However, conventional single well-MEA systems lack the throughput necessary for screening large numbers of uncharacterized compounds. Recently, multi-well MEA (mwMEA) formats have become available to address the need for increased throughput. The current experiments examined the effects of a training set of 30 chemicals on spontaneous activity in networks of cortical neurons grown on mwMEA plates. Each plate contained 12 wells with 64 microelectrodes/well, for a total of 768 channels. Of the 30 chemicals evaluated, 23 were known to alter neuronal function in vivo (positives), including 6 GABAergic and 3 glutamatergic antagonists/agonists, 4 pyrethroids, 3 metals, 2 cholinesterase inhibitors, 2 nicotinic acetylcholine receptor agonists, valproic acid, verapamil, and fluoxetine. Seven compounds expected to have no effect on neuronal function were tested as negatives (glyphosate, acetaminophen, salicylic acid, paraquat, saccharin, D-sorbitol and amoxicillin). Following collection of 33 min of baseline activity, chemical effects (50 mu M or highest soluble concentration) were recorded for 33 min. Twenty of the positives altered the mean network spike rate by more than the 14% threshold (two standard deviations from the mean for DMSO control). The three positives without effect were bifenthrin, nicotine and imidacloprid. None of the negative compounds caused a change in activity beyond the threshold. Based on these results, the mwMEA assay has both high sensitivity (87% identification of positive compounds) and specificity (100% identification of negative compounds). These experiments demonstrate the capacity of mwMEAs to screen compounds for neurotoxic effects mediated by a broad variety of mechanisms. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据