4.4 Article

Whole genome expression profile in neuroblastoma cells exposed to 1-methyl-4-phenylpyridine

期刊

NEUROTOXICOLOGY
卷 33, 期 5, 页码 1156-1169

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neuro.2012.06.009

关键词

MPP; Neuro 2a; Parkinson's disease; Whole genome; Glycolysis; Complex I

资金

  1. National Center for Research Resources NIH NCRR RCMI program [G12RR 03020]
  2. National Institute of Minority Health and Health Disparities, NIH [8G12MD007582-28, 1P20 MD006738-01]

向作者/读者索取更多资源

Mitochondrial dysfunction and subsequent energy failure is a contributing factor to degeneration of the substantia nigra pars compacta associated with Parkinson's disease (PD). In this study, we investigate molecular events triggered by cell exposure to the mitochondrial toxin 1-methyl-4-phenylpyridine (MPP+) using whole genome-expression microarray, Western Blot and metabolic studies. The data show that MPP+ (500 mu M) obstructs mitochondrial respiration/oxidative phosphorylation (OXPHOS) in mouse neuroblastoma Neuro-2a cells, juxtaposing accelerated glucose consumption and production of lactic acid. While additional glucose concentrations restored viability in the presence of MPP+ (500 mu M), the loss of OXPHOS was sustained, suggesting that compensatory anaerobic metabolic systems were fulfilling required energy needs. Under these conditions, MPP+ initiated significant changes to the transcription of 439 genes of which 287 DAVID IDs were identified and subsequent functional annotation clusters identified. Prominent changes were as follows; MPP+ initiated loss of mRNA for mitochondrial encoded 3-hydroxybutyratedehydrogenase, type2(Bdh2), tv1, NADH dehydrogenase 4,5 genes, cytochrome b and NADH dehydrogenase (ubiquinone) flavoprotein 3, concomitant to rise in a mitochondrial fission gene; ganglioside-induced differentiation-associated-protein 1 (GDAP1). The negative changes to OXPHOS components were accompanied by protective forces within the mitochondria espousing elevated ratio of anti/pro-apoptotic processes. These included a loss of apoptotic Bcl-2/adenovirus Et B 19-kDa-interacting protein (BNIP3) and family with sequence similarity 162, member A (FAM162a) and rise of heat shock protein 1 and Lon peptidase 1. There were no changes indicative of free radical damage (e.g. SOD, GSH-Px), rather MPP+ initiated significant elevation in G protein signaling components (which trigger catabolic processes) and anaerobic metabolic systems involving carboxylic acid/transamination reactions (e.g. glutamate oxaloacetate transaminase 1 (GOT1), glutamic pyruvate-alanine transaminase 2 (GPT2), cystathionase and redox proteins such as cytochrome b5 reductase 1 and ferredoxin reductase. Counter-intuitively, the data show reduction of mRNA in glycolytic processes [DAVID enrichment score 9.96 p value 1.90E-19], some corroborated by Western Blot, bringing in to question the sources of lactate observed in the presence of MPP+. Examining this aspect, the data show that diverse carboxylic acids (succinate, oxaloacetate and a-ketoglutarate) are capable of contributing to the lactate pool in addition to phosph(enolpyruvate) or pyruvate in the absence of glucose by this cell line. In conclusion, these findings show that MPP+ negatively affects the transcriptome involved with complex I, but initiated an elevation of G protein signaling and anaerobic metabolic systems involved with nitrogen/carboxylic acid metabolism. Future research will be required to elucidate the survival pathways that drive anaerobic substrate level phosphorylation, and define functional ramification to the loss of mitochondrial FAM162a and BNIP3 proteins. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据