4.4 Article Proceedings Paper

Type-2 alkenes mediate synaptotoxicity in neurodegenerative diseases

期刊

NEUROTOXICOLOGY
卷 29, 期 5, 页码 871-882

出版社

ELSEVIER
DOI: 10.1016/j.neuro.2008.04.016

关键词

Alzheimer's disease; Amyotrophic lateral sclerosis; Parkinson's disease; Oxidative injury; Acrylamide; Acrolein; 4-Hydroxy-2-nonenal; Synapse

资金

  1. NIEHS NIH HHS [R01 ES003830, R01 ES03830-21, ES07912-10] Funding Source: Medline

向作者/读者索取更多资源

Synaptic dysfunction appears to be an early pathogenic event in Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease. Although the molecular mechanism of this synaptotoxicity is not known, evidence suggests that these diseases are characterized by a common pathophysiological cascade involving oxidative stress, lipid peroxidation and the subsequent liberation of alpha,beta-unsaturated carbonyl derivatives such as acrolein and 4-hydroxy-2-nonenal (HNE). A diverse body of in vivo and in vitro data have shown that these soft electrophilic chemicals can cause nerve terminal damage by forming Michael-type adducts with nucleophilic sulfhydryl groups on presynaptic proteins. Therefore, the endogenous generation of acrolein and HNE in oxidatively stressed neurons of certain brain regions might be mechanistically related to the synaptotoxicity associated with neurodegenerative conditions. In addition, acrolein and HNE are members of a large class of structurally related chemicals known as the type-2 alkenes. Chemicals in this class (e.g., acrylamide, methylvinyl ketone, and methyl acrylate) are pervasive pollutants in human environments and new research has shown that these alpha,beta-unsaturated carbonyl derivatives are also toxic to nerve terminals. In this review, we provide evidence that the regional synaptotoxicity, which develops during the early stages of many neurodegenerative diseases, is mediated by endogenous generation of acrolein and HNE. Based on a presumed common nerve terminal site of action, we propose that the onset and progression of this neuropathogenic process is accelerated by environmental exposure to other type-2 alkenes. (C) 2008 Elsevier Inc. All rights reserved

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据