4.4 Article

Extracellular HMGB1 Released by NMDA Treatment Confers Neuronal Apoptosis via RAGE-p38 MAPK/ERK Signaling Pathway

期刊

NEUROTOXICITY RESEARCH
卷 20, 期 2, 页码 159-169

出版社

SPRINGER
DOI: 10.1007/s12640-010-9231-x

关键词

HMGB1; NMDA-conditioned media; Apoptosis; Primary cortical culture; RAGE

资金

  1. Korea government [R01-2007-000-10852-0]
  2. KOSEF, Republic of Korea [2009-0065403]
  3. National Research Foundation of Korea [R01-2007-000-10852-0] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

High mobility group box 1 (HMGB1) was originally identified as ubiquitously expressed nonhistone DNA-binding protein, but recently, it was found to act as an endogenous danger molecule, which signals danger and traumatic cell death. Previously, the authors showed that HMGB1 is massively released immediately after an ischemic insult and that it subsequently activates microglia and induces inflammation in the postischemic brain. Here, we showed the endogenous danger molecule-like function of HMGB1 in primary cortical cultures. HMGB1 was found to be accumulated in NMDA-treated primary cortical culture media, and media collected from these cultures were able to induce neuronal cell death when added to fresh primary cortical cultures. However, HMGB1-depleted NMDA-conditioned media produced by HMGB1 siRNA transfection or by preincubation with anti-HMGB1 antibody or with HMGB1 A box failed to induce neuronal cell death. Furthermore, siRNA-mediated HMGB1 knockdown substantially suppressed NMDA- or Zn(2+)-induced cell death. It was interesting to find that extracellular HMGB1-induced neuronal apoptosis, as evidenced by TUNEL staining and caspase 3 assay in combination with double immunofluorescence staining. A series of RAGE and HMGB1 co-immunoprecipitation experiments in the presence of SB203580 and PD98059 (p38 MAPK and ERK inhibitors, respectively) demonstrated that RAGE-p38 MAPK and RAGE-ERK pathway might underlie extracellular HMGB1-mediated neuronal apoptosis. These results together with our previous reports regarding microglial activation by extracellular HMGB1 indicate that HMGB1 functions as a novel danger signal, which aggravates brain damage via autocrine and paracrine manners.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据