4.4 Article

The Kynurenine Pathway and Inflammation in Amyotrophic Lateral Sclerosis

期刊

NEUROTOXICITY RESEARCH
卷 18, 期 2, 页码 132-142

出版社

SPRINGER
DOI: 10.1007/s12640-009-9129-7

关键词

Amyotrophic lateral sclerosis; Kynurenine pathway; Excitotoxicity; Neuroinflammation

资金

  1. Motor Neuron Disease Research Institute Association (Australia)
  2. University of Sydney
  3. Schizophrenia Research Institute
  4. National Institutes on Alcohol Abuse and Alcoholism (NIAAA) [R01AAA01272508]
  5. Sydney South Western Area Health Service (SSWAHS)

向作者/读者索取更多资源

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease of unknown pathogenesis. The kynurenine pathway (KP), activated during neuroinflammation, is emerging as a possible contributory factor in ALS. The KP is the major route for tryptophan (TRP) catabolism. The intermediates generated can be either neurotoxic, such as quinolinic acid (QUIN), or neuroprotective, such as picolinic acid (PIC), an important endogenous chelator. The first and inducible enzyme of the pathway is indoleamine 2,3-dioxygenase (IDO). The present study aimed to characterize the expression of the KP in cerebrospinal fluid (CSF), serum and central nervous system (CNS) tissue of ALS patients. Using high performance liquid chromatography, we analysed the levels of TRP and kynurenine (KYN), and, with gas chromatography/mass spectrometry, the levels of PIC and QUIN, in the CSF and serum of ALS patients and control subjects. Immunohistochemistry was employed to determine the expression of QUIN, IDO and human leukocyte antigen-DR (HLA-DR) in sections of brain and spinal cord from ALS patients. There were significantly increased levels of CSF and serum TRP (P < 0.0001), KYN (P < 0.0001) and QUIN (P < 0.05) and decreased levels of serum PIC (P < 0.05) in ALS samples. There was a significant increase in activated microglia expressing HLA-DR (P < 0.0001) and increased neuronal and microglial expression of IDO and QUIN in ALS motor cortex and spinal cord. We show the presence of neuroinflammation in ALS and provide the first strong evidence for the involvement of the KP in ALS. These data point to an inflammation-driven excitotoxic-chelation defective mechanism in ALS, which may be amenable to inhibitors of the KP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据