4.6 Article

Activated STAT3 Regulates Hypoxia-Induced Angiogenesis and Cell Migration in Human Glioblastoma

期刊

NEUROSURGERY
卷 67, 期 5, 页码 1386-1395

出版社

OXFORD UNIV PRESS INC
DOI: 10.1227/NEU.0b013e3181f1c0cd

关键词

Angiogenesis; Glioblastoma; Hypoxia; Migration; Signal transducer and activator of transcription 3

资金

  1. Korea Research Foundation [2009-0077384]
  2. National Research Foundation of Korea [2009-0077384] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

BACKGROUND: Glioblastoma is the most common primary brain tumor, with typical histopathologic findings, pseudopalisading necrosis, and microvascular proliferation, all of which are associated with a poor prognosis. Hypoxia is known to affect these morphological features, but the underlying molecular mechanism has been poorly understood. OBJECTIVE: To determine the role of signal transducer and activator of transcription 3 (STAT3) in the malignant progression of glioblastoma under hypoxic conditions. METHODS: We studied STAT3 activation by hypoxic stress and its effect on hypoxia-induced angiogenesis and cell migration using U87, A172, T98, and U373 human glioblastoma cell lines. RESULTS: All four glioblastoma cells analyzed expressed detectable levels of STAT3 phosphorylation. Hypoxic stress markedly increased phosphorylated STAT3 level in a time-dependent fashion, and activated STAT3 was translocated into the nucleus. Hypoxic conditions led to a 30-50% increase in angiogenesis and cell migration, but these effects were significantly attenuated by small interfering ribonucleic acid-mediated knockdown of STAT3. Furthermore, STAT3 activation was associated with an elevated expression of hypoxic inducible factor-1, vascular endothelial growth factor, matrix metalloproteinase 2, and TWIST messenger ribonucleic acid and protein, which may play a critical role in hypoxia-induced angiogenesis and migration. CONCLUSION: STAT3 plays an important role in glioblastoma angiogenesis and migration triggered by hypoxia. Therefore, STAT3 might be a target for control of pseudopalisading necrosis and angiogenesis in glioblastoma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据