4.6 Article

A COMPARISON BETWEEN STEM CELLS FROM THE ADULT HUMAN BRAIN AND FROM BRAIN TUMORS

期刊

NEUROSURGERY
卷 63, 期 6, 页码 1022-1033

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1227/01.NEU.0000335792.85142.B0

关键词

Adult human neural stem cell; Cancer stem cell; Electrophysiology; Glioma; Transplantation

资金

  1. Ulleval University Hospital, Rikshospitalet
  2. Norwegian Research Council
  3. Norwegian Foundation for Health and Rehabilitation
  4. Norwegian Parkinson's Association
  5. Center for Research-based Innovation on Cancer Stem Cells
  6. Malthe Foundation
  7. Swedish Medical Research Council
  8. Karolinska University Hospital

向作者/读者索取更多资源

OBJECTIVE: To directly compare stem cells from the normal adult human brain (adult human neural stem cells [AHNSC]), Grade II astrocytomas (AC II), and glioblastoma multiforme (GBM), with respect to proliferative and tumor-forming capacity and differentiation potential. METHODS: Cells were isolated from tissue obtained during epilepsy surgery (AHNSCs) or tumor surgery (glioma stem cells [GSC]). They were cultured and investigated in vitro or after transplantation in immunodeficient mice. RESULTS: Under identical experimental conditions, the following were found: 1) GBM stem cells formed tumors after orthotopic transplantation; AHNSCs showed no sign of tumor formation; 2) GSCs showed a significantly higher growth rate and self-renewal capacity; 3) both the growth rate and telomerase expression were high in GSCs and correlated with malignancy grade (GBM higher than AC II); AHNSCs had low telomerase expression; 4) GSCs invaded normal neurospheres, not vice versa; 5) both AHNSCs and stem cells from AC II and GBM responded to differentiation cues with a dramatic decrease in the proliferation index (Ki-67); 6) GSCs differentiated faster than AHNSCs; 7) upon differentiation, AHNSCs produced normal glia and neurons; GSCs produced morphologically aberrant cells often expressing both glial and neuronal antigens; and 8) differentiation of AHNSCs resulted in 2 typical functional phenotypes: neurons (high electrical membrane resistance, ability to generate action potentials) and glial cells (low membrane resistance, no action potentials). In contrast, GSCs resulted in only I functional phenotype: cells with high electrical resistance and active membrane properties capable of generating action potentials. CONCLUSION: AHNSCs and stem cells from AC II and GBM differ with respect to proliferation, tumor-forming capacity, and rate and pattern of differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据