4.5 Review

Nitric Oxide Signaling in Brain Function, Dysfunction, and Dementia

期刊

NEUROSCIENTIST
卷 16, 期 4, 页码 435-452

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/1073858410366481

关键词

nitric oxide; synaptic transmission; K+ channels; homeostatic signaling; intrinsic neuronal excitability; neurodegeneration; oxidative stress; Alzheimer's disease; Parkinson's disease

资金

  1. Medical Research Council
  2. MRC [MC_U132681855] Funding Source: UKRI
  3. Medical Research Council [MC_U132681855] Funding Source: researchfish

向作者/读者索取更多资源

Nitric oxide (NO) is an important signaling molecule that is widely used in the nervous system. With recognition of its roles in synaptic plasticity (long-term potentiation, LTP; long-term depression, LTD) and elucidation of calcium-dependent, NMDAR-mediated activation of neuronal nitric oxide synthase (nNOS), numerous molecular and pharmacological tools have been used to explore the physiology and pathological consequences for nitrergic signaling. In this review, the authors summarize the current understanding of this subtle signaling pathway, discuss the evidence for nitrergic modulation of ion channels and homeostatic modulation of intrinsic excitability, and speculate about the pathological consequences of spillover between different nitrergic compartments in contributing to aberrant signaling in neurodegenerative disorders. Accumulating evidence points to various ion channels and particularly voltage-gated potassium channels as signaling targets, whereby NO mediates activity-dependent control of intrinsic neuronal excitability; such changes could underlie broader mechanisms of synaptic plasticity across neuronal networks. In addition, the inability to constrain NO diffusion suggests that spillover from endothelium (eNOS) and/or immune compartments (iNOS) into the nervous system provides potential pathological sources of NO and where control failure in these other systems could have broader neurological implications. Abnormal NO signaling could therefore contribute to a variety of neurodegenerative pathologies such as stroke/excitotoxicity, Alzheimer's disease, multiple sclerosis, and Parkinson's disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据