4.4 Article

Protective effects of XBP1 against oxygen and glucose deprivation/reoxygenation injury in rat primary hippocampal neurons

期刊

NEUROSCIENCE LETTERS
卷 518, 期 1, 页码 45-48

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neulet.2012.04.053

关键词

XBP1; OGD/reoxygenation; Neuroprotection; ER stress

资金

  1. Grants-in-Aid for Scientific Research [24659259] Funding Source: KAKEN

向作者/读者索取更多资源

The accumulation of misfolded and unfolded proteins in the endoplasmic reticulum (ER) induces ER stress, activating the unfolded protein response (UPR). One of the effectors of the UPR is XBP1, a critical transcriptional factor for genes responsible for cell survival. ER stress is also known to play a vital role in mediating ischemic reperfusion damage in the brain. In this study, we investigated the role of XBP1 in rat primary hippocampal neurons subjected to oxygen and glucose deprivation followed by reoxygenation (OGD/R) stress, an in vitro model of ischemia/reperfusion (I/R) injury. Primary neurons subjected to OGD had increased levels of spliced XBP1 (XBP1s) mRNA. Interestingly, the level of XBP1s decreased during the initial reoxygenation stress period. The combination of OGD and the subsequent 20-h reoxygenation stress period significantly increased the apoptotic death of primary cells. Overexpression of XBP1s suppressed cell death induced by OGD/R stress. These results suggest that suppression of XBP1 activation accelerates neuronal cell death after I/R and that activation of the XBP1 pathway may provide a therapeutic approach for the treatment of cerebral I/R injury. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据