4.5 Article

TARGETING THE MOTOR END PLATES IN THE MOUSE HINDLIMB GIVES ACCESS TO A GREATER NUMBER OF SPINAL CORD MOTOR NEURONS: AN APPROACH TO MAXIMIZE RETROGRADE TRANSPORT

期刊

NEUROSCIENCE
卷 274, 期 -, 页码 318-330

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2014.05.045

关键词

Motor neurons; Motor end plates; Retrograde transport; Muscles; Fluoro-Gold; Mouse hindlimb

资金

  1. National Health and Medical Research Centre (NHMRC) project grant
  2. Brain Foundation - Australia project grant

向作者/读者索取更多资源

Lower motor neuron dysfunction is one of the most debilitating neurological conditions and, as such, significantly impacts on the quality of life of affected individuals. Within the last decade, the engineering of mouse models of lower motor neuron diseases has facilitated the development of new therapeutic scenarios aimed at delaying or reversing the progression of these conditions. In this context, motor end plates (MEPs) are highly specialized regions on the skeletal musculature that offer minimally invasive access to the pre-synaptic nerve terminals, henceforth to the spinal cord motor neurons. Transgenic technologies can take advantage of the relationship between the MEP regions on the skeletal muscles and the corresponding motor neurons to shuttle therapeutic genes into specific compartments within the ventral horn of the spinal cord. The first aim of this neuroanatomical investigation was to map the details of the organization of the MEP zones for the main muscles of the mouse hindlimb. The hindlimb was selected for the present work, as it is currently a common target to challenge the efficacy of therapies aimed at alleviating neuromuscular dysfunction. This MEP map was then used to guide series of intramuscular injections of Fluoro-Gold (FG) along the muscles' MEP zones, therefore revealing the distribution of the motor neurons that supply them. Targeting the entire MEP regions with FG increased the somatic availability of the retrograde tracer and, consequently, gave rise to FG-positive motor neurons that are organized into rostro-caudal columns spanning more spinal cord segments than previously reported. The results of this investigation will have positive implications for future studies involving the somatic delivery and retrograde transport of therapeutic transgenes into affected motor neurons. These data will also provide a framework for transgenic technologies aiming at maintaining the integrity of the neuromuscular junction for the treatment of lower motor neuron dysfunctions. (C) 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据