4.5 Article

LACK OF BDNF EXPRESSION THROUGH PROMOTER IV DISTURBS EXPRESSION OF MONOAMINE GENES IN THE FRONTAL CORTEX AND HIPPOCAMPUS

期刊

NEUROSCIENCE
卷 260, 期 -, 页码 265-275

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2013.12.013

关键词

BDNF; promoter IV; monoamine systems; gene expression; frontal cortex; hippocampus

向作者/读者索取更多资源

Brain-derived neurotrophic factor (BDNF) is implicated in the pathophysiology of psychiatric conditions including major depression and schizophrenia. Mice lacking activity-driven BDNF expression through promoter IV (knock-in promoter IV: KIV) exhibit depression-like behavior, inflexible learning, and impaired response inhibition. Monoamine systems (serotonin, dopamine, and noradrenaline) are suggested to be involved in depression and schizophrenia since many of the current antidepressants and antipsychotics increase the brain levels of monoamines and/or act on monoamine receptors. To elucidate the impact of activity-driven BDNF on the monoamine systems, we examined mRNA levels for 30 monoamine-related genes, including receptors, transporters, and synthesizing enzymes, in KIV and control wild-type mice by using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). mRNA levels were measured in the frontal cortex and hippocampus, which are regions related to depression and schizophrenia and where promoter IV is active. The frontal cortex of KIV mice showed reduced levels of mRNA expression for serotonin receptors 1b, 2a, and 5b (5HTR1b, 5HTR2a, 5HTR5b), dopamine D2 receptors (DRD2), and adrenergic receptors alpha 1a and 1d (AdRa1a and AdRa1b), but increased levels for serotonin synthesizing enzyme, tryptophan hydroxylase (TPH), and dopamine D4 receptor (DRD4) when compared to control wild-type mice. The hippocampus of KIV mice showed decreased levels of 5HTR5b. Our results provide causal evidence that lack of promoter IV-driven BDNF disturbs expression of monoaminergic genes in the frontal cortex and hippocampus. These disturbed expression changes in the monoamine systems may mediate the depression-and schizophrenia-like behavior of KIV mice. Our results also suggest that antidepressant and antipsychotic treatments may actually interfere with and normalize the disturbed monoamine systems caused by reduced activity-dependent BDNF, while the treatment responses to these drugs may differ in the subject with reduced BDNF levels caused by stress and lack of neuronal activity. (C) 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据