4.6 Review

The Effects of Repeated-Sprint Training on Field-Based Fitness Measures: A Meta-Analysis of Controlled and Non-Controlled Trials

期刊

SPORTS MEDICINE
卷 45, 期 6, 页码 881-891

出版社

ADIS INT LTD
DOI: 10.1007/s40279-015-0324-9

关键词

-

向作者/读者索取更多资源

Background Repeated-sprint training appears to be an efficient and practical means for the simultaneous development of different components of fitness relevant to team sports. Objective Our objective was to systematically review the literature and meta-analyse the effect of repeated-sprint training on a selection of field-based measures of athletic performance, i.e. counter-movement jump, 10 m sprint, 20 m sprint, 30 m sprint, repeated-sprint ability and high-intensity intermittent running performance. Data Sources The SPORTDiscus, PubMed, MEDLINE and Web of Science databases were searched for original research articles. Search terms included 'repeated-sprint training', 'sprint training', 'aerobic endurance', 'repeated-sprint ability', 'counter-movement jump' and 'sprint performance'. Study Selection Inclusion criteria included intervention consisting of a series of <= 10 s sprints with <= 60 s recovery; trained participants; intervention duration of 2-12 weeks; field-based fitness measures; running- or cycling-based intervention; published up to, and including, February 2014. Data Extraction Our final dataset included six trials for counter-movement jump (two controlled trials), eight trials for 10 m sprint, four trials for 20 m sprint (three controlled trials), two trials for 30 m sprint, eight trials for repeated-sprint ability and three trials for high-intensity intermittent running performance. Analyses were conducted using comprehensive meta-analysis software. Uncertainty in the meta-analysed effect of repeated-sprint training was expressed as 95% confidence limits (CL), along with the probability that the true value of the effect was trivial, beneficial or harmful. Magnitude-based inferences were based on standardised thresholds for small, moderate and large changes of 0.2, 0.6 and 1.2 standard deviations, respectively. Results Repeated-sprint training had a likely small beneficial effect in non-controlled counter-movement jump trials (effect size 0.33; 95% CL +/- 0.30), with a possibly moderate beneficial effect in controlled trials (0.63; 95% CL +/- 0.44). There was a very likely small beneficial effect on 10 m sprint time in non-controlled trials (-0.42; 95% CL +/- 0.24), with a possibly moderate beneficial effect on 20 m sprint time in non-controlled (-0.49; 95% CL +/- 0.46) and controlled (-0.65; 95% CL +/- 0.61) trials. Repeated-sprint training had a possibly large beneficial effect on 30 m sprint performance in non-controlled trials (-1.01; 95% CL +/- 0.93), with possibly moderate beneficial effects on repeated-sprint ability (-0.62; 95% CL +/- 0.25) and high-intensity intermittent running performance (-0.61; 95% CL +/- 0.54). Conclusions Repeated-sprint training can induce small to large improvements in power, speed, repeated-sprint ability and endurance, and may have relevance for training in team sports.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据