4.5 Review

BRAIN-DERIVED NEUROTROPHIC FACTOR AND ANDROGEN INTERACTIONS IN SPINAL NEUROMUSCULAR SYSTEMS

期刊

NEUROSCIENCE
卷 239, 期 -, 页码 103-114

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2012.10.028

关键词

testosterone; motoneuron; muscle; morphology; neurotrophic factors

资金

  1. NIH-NINDS [NS047264]

向作者/读者索取更多资源

Neurotrophic factors and steroid hormones interact to regulate a variety of neuronal processes such as neurite outgrowth, differentiation, and neuroprotection. The coexpression of steroid hormone and neurotrophin receptor mRNAs and proteins, as well as their reciprocal regulation provides the necessary substrates for such interactions to occur. This review will focus on androgen brain-derived neurotrophic factor (BDNF) interactions in the spinal cord, describing androgen regulation of BDNF in neuromuscular systems following castration, androgen manipulation, and injury. Androgens interact with BDNF during development to regulate normally-occurring motoneuron death, and in adulthood, androgen BDNF interactions are involved in the maintenance of several features of neuromuscular systems. Androgens regulate BDNF and trkB expression in spinal motoneurons. Androgens also regulate BDNF levels in the target musculature, and androgenic action at the muscle regulates BDNF levels in motoneurons. These interactions have important implications for the maintenance of motoneuron morphology. Finally, androgens interact with BDNF after injury, influencing soma size, dendritic morphology, and axon regeneration. Together, these findings provide further insight into the development and maintenance of neuromuscular systems and have implications for the neurotherapeutic/neuroprotective roles of androgens and trophic factors in the treatment of motoneuron disease and recovery from injury. This article is part of a Special Issue entitled: Steroid hormone actions in the CNS: the role of BDNF. (c) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据