4.2 Article

Quadriceps effort during squat exercise depends on hip extensor muscle strategy

期刊

SPORTS BIOMECHANICS
卷 14, 期 1, 页码 122-138

出版社

ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
DOI: 10.1080/14763141.2015.1024716

关键词

musculoskeletal modelling; co-contraction; hamstrings; gluteus maximus; Knee

资金

  1. National Strength and Conditioning Association Foundation

向作者/读者索取更多资源

Hip extensor strategy, specifically relative contribution of gluteus maximus versus hamstrings, will influence quadriceps effort required during squat exercise, as hamstrings and quadriceps co-contract at the knee. This research examined the effects of hip extensor strategy on quadriceps relative muscular effort (RME) during barbell squat. Inverse dynamics-based torque-driven musculoskeletal models were developed to account for hamstrings co-contraction. Net joint moments were calculated using 3D motion analysis and force platform data. Hamstrings co-contraction was modelled under two assumptions: (1) equivalent gluteus maximus and hamstrings activation (Model 1) and (2) preferential gluteus maximus activation (Model 2). Quadriceps RME, the ratio of quadriceps moment to maximum knee extensor strength, was determined using inverse dynamics only, Model 1 and Model 2. Quadriceps RME was greater in both Models 1 and 2 than inverse dynamics only at barbell loads of 50-90% one repetition maximum. The highest quadriceps RMEs were 120 +/- 36% and 87 +/- 28% in Models 1 and 2, respectively, which suggests that barbell squats are only feasible using the Model 2 strategy prioritising gluteus maximus versus hamstrings activation. These results indicate that developing strength in both gluteus maximus and quadriceps is essential for lifting heavy loads in squat exercise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据