4.5 Article

LEARNING-STAGE-DEPENDENT, FIELD-SPECIFIC, MAP PLASTICITY IN THE RAT AUDITORY CORTEX DURING APPETITIVE OPERANT CONDITIONING

期刊

NEUROSCIENCE
卷 199, 期 -, 页码 243-258

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2011.09.046

关键词

auditory cortex; learning; homeostasis; plasticity; disinhibition; operant conditioning

向作者/读者索取更多资源

Cortical reorganizations during acquisition of motor skills and experience-dependent recovery after deafferentation consist of several distinct phases, in which expansion of receptive fields is followed by the shrinkage and use-dependent refinement. In perceptual learning, however, such non-monotonic, stage-dependent plasticity remains elusive in the sensory cortex. In the present study, microelectrode mapping characterized plasticity in the rat auditory cortex, including primary, anterior, and ventral/suprarhinal auditory fields (A1, AAF, and VAF/SRAF), at the early and late stages of appetitive operant conditioning. We first demonstrate that most plasticity at the early stage was tentative, and that long-lasting plasticity after extended training was able to be categorized into either early- or late-stage-dominant plasticity. Second, training-induced plasticity occurred both locally and globally with a specific temporal order. Conditioned-stimulus (CS) frequency used in the task tended to be locally over-represented in AAF at the early stage and in VAF/SRAF at the late stage. The behavioral relevance of neural responses suggests that the local plasticity also occurred in A1 at the early stage. In parallel, the tone-responsive area globally shrank at the late stage independently of CS frequency, and this shrinkage was also correlated with the behavioral improvements. Thus, the stage-dependent plasticity may commonly underlie cortical reorganization in the perceptual learning, yet the interactions of local and global plasticity have led to more complicated reorganization than previously thought. Field-specific plasticity has important implications for how each field subserves in the learning; for example, consistent with recent notions, A1 should construct filters to better identify auditory objects at the early stage, while VAF/SRAF contribute to hierarchical computation and storage at the late stage. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据