4.5 Article

PHOTOPERIOD-MEDIATED IMPAIRMENT OF LONG-TERM POTENTION AND LEARNING AND MEMORY IN MALE WHITE-FOOTED MICE

期刊

NEUROSCIENCE
卷 175, 期 -, 页码 127-132

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2010.12.004

关键词

photoperiod; LTP; spatial learning and memory; melatonin

资金

  1. NIH [MH57535]
  2. NSF [IOS-08-38098]

向作者/读者索取更多资源

Adult mammalian brains are capable of some structural plasticity. Although the basic cellular mechanisms underlying learning and memory are being revealed, extrinsic factors contributing to this plasticity remain unspecified. White-footed mice (Peromyscus leucopus) are particularly well suited to investigate brain plasticity because they show marked seasonal changes in structure and function of the hippocampus induced by a distinct environmental signal, viz., photoperiod (i.e. the number of hours of light/day). Compared to animals maintained in 16 h of light/day, exposure to 8 h of light/day for 10 weeks induces several phenotypic changes in P. leucopus, including reduction in brain mass and hippocampal volume. To investigate the functional consequences of reduced hippocampal size, we examined the effects of photoperiod on spatial learning and memory in the Barnes maze, and on long-term potentiation (LTP) in the hippocampus, a leading candidate for a synaptic mechanism underlying spatial learning and memory in rodents. Exposure to short days for 10 weeks decreased LIP in the Schaffer collateral-CA1 pathway of the hippocampus and impaired spatial learning and memory ability in the Barnes maze. Taken together, these results demonstrate a functional change in the hippocampus in male white-footed mice induced by day length. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据