4.5 Article

MORPHOLOGICAL AND ELECTROPHYSIOLOGICAL CHARACTERISTICS OF NEURONS WITHIN IDENTIFIED SUBNUCLEI OF THE LATERAL HABENULA IN RAT BRAIN SLICES

期刊

NEUROSCIENCE
卷 172, 期 -, 页码 74-93

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2010.10.047

关键词

basal ganglia; habenular subnuclei; reward; whole-cell recording; neurobiotin; neurogliaform cell

向作者/读者索取更多资源

Based on the specificity of its inputs and targets, the lateral habenular complex (LHb) constitutes a pivotal motor-limbic interface implicated in various cerebral functions particularly in regulating monoamine transmission. Despite its functional significance, cellular characteristics underlying LHb functionality have not been examined systematically. The present study aimed to correlate morphological and electrophysiological properties of neurons within the different subnuclei of the LHb using whole-cell recording and neurobiotin labeling in rat slice preparations. Morphological analysis revealed a heterogeneous population of projection neurons randomly distributed throughout the LHb. According to somatodendritic characteristics four main categories were classified including spherical, fusiform, polymorphic and vertical cells. Electrophysiological characterization of neurons within the different categories demonstrated homologous profiles and no significant differences between groups. Typically, LHb neurons possessed high input resistances and long membrane time constants. They also displayed time-dependent inward rectification and distinct afte-rhyperpolarization. A salient electrophysiological feature of LHb neurons was their ability to generate rebound bursts of action potentials in response to membrane hyperpolarization. Based on the pattern of spontaneous activity, neurons were classified as silent, tonic or bursting. The occurrence of distinctive firing modes was not related to topographic allocation. The patterns of spontaneous firing and evoked discharge were highly sensitive to alterations in membrane potential and merged upon de- and hyperpolarizing current injection and synaptic stimulation. Besides projection neurons, recordings revealed the existence of a subpopulation of cells possessing morphological and physiological properties of neocortical neurogliaform cells. They were considered to be interneurons. Our data suggest that neurons within the different LHb subnuclei behave electrophysiologically more similar than expected, considering their morphological heterogeneity. We conclude that the formation of functional neuronal entities within the LHb may be achieved through defined synaptic inputs to particular neurons, rather than by individual neuronal morphologies and intrinsic membrane properties. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据