4.5 Article

HISTAMINE POTENTIATES ACID-INDUCED RESPONSES MEDIATING TRANSIENT RECEPTOR POTENTIAL V1 IN MOUSE PRIMARY SENSORY NEURONS

期刊

NEUROSCIENCE
卷 166, 期 1, 页码 292-304

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2009.12.001

关键词

capsaicin; calcium; dorsal root ganglion; inflammation; histamine; TRPV1

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Grants-in-Aid for Scientific Research [21658096] Funding Source: KAKEN

向作者/读者索取更多资源

In inflamed tissues, extracellular pH decreases and acidosis is an important source of pain. Histamine is released from mast cells under inflammatory conditions and evokes the pain sensation in vivo, but the cellular mechanism of histamine-induced pain has not been well understood. In the present study, we examined the effects of histamine on [Ca2+](i) and membrane potential responses to acid in isolated mouse dorsal root ganglion (DRG) neurons. In capsaicin-sensitive DRG neurons from wild-type mice, acid (>pH 5.0) evoked [Ca2+](i) increases, but not in DRG neurons from transient receptor potential V1 (TRPV1) (-/-) mice. Regardless of isolectin GS-IB4 (IB4)-staining, histamine potentiated [Ca2+](i) responses to acid (>= pH 6.0) that were mediated by TRPV1 activation. Histamine increased membrane depolarization induced by acid and evoked spike discharges. RT-PCR indicated the expression of all four histamine receptors (H1R, H2R, H3R, H4R) in mouse DRG. The potentiating effect of histamine was mimicked by an H1R agonist, but not H2R-H4R agonists and was inhibited only by an H1R antagonist. Histamine failed to potentiate the [Ca2+](i) response to acid in the presence of inhibitors for phospholipase C (PLC) and protein kinase C (PKC). A lipoxygenase inhibitor and protein kinase A inhibitor did not affect the potentiating effects of histamine. Carrageenan and complete Freund's adjuvant produced inflammatory hyperalgesia, but these inflammatory conditions did not change the potentiating effects of histamine in DRG neurons. The present results suggest that histamine sensitizes acid-induced responses through TRPV1 activation via H1R coupled with PLC/PKC pathways, the action of which may be involved in the generation of inflammatory pain. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据