4.5 Article

NEUROPROTECTION BY CAFFEINE: TIME COURSE AND ROLE OF ITS METABOLITES IN THE MPTP MODEL OF PARKINSON'S DISEASE

期刊

NEUROSCIENCE
卷 167, 期 2, 页码 475-481

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2010.02.020

关键词

dopamine; adenosine A(2A) receptor; theophylline; paraxanthine; striatum; neurotoxicity

资金

  1. NIH [ES10804, DA13508, NS054978, NS60991]
  2. USAMRAA [W81XWH-04-1-0881]
  3. American Parkinson's disease Association
  4. National Parkinson's Foundation

向作者/读者索取更多资源

Epidemiological studies have raised the possibility of caffeine serving as a neuroprotective agent in Parkinson's disease (PD). This possibility has gained support from findings that dopaminergic neuron toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or other neurotoxins is attenuated by co-administration of caffeine in mice. Here we examined the time window of caffeine's neuroprotection as well as the effects of caffeine's metabolites (theophylline and paraxanthine) in the MPTP mouse model of PD. In the first experiment, caffeine pre-treatment (30 mg/kg ip) significantly attenuated MPTP-induced striatal dopamine depletion when it was given 10 min, 30 min, 1 h, or 2 h but not 6 h before MPTP (40 mg/kg ip) treatment. Meanwhile, caffeine post-treatment also significantly attenuated striatal dopamine loss when it was given 10 min, 30 min, 1 h or 2 h but not 4 h, 8 h or 24 h after MPTP injection. In the second experiment, both theophylline (10 or 20 mg/kg) and paraxanthine (10 or 30 mg/kg) administration (10 min before MPTP) significantly attenuated MPTP-induced dopamine depletion in mice, as did caffeine (10 mg/kg) treatment. Thus the metabolites of caffeine also provide neuroprotective effects in this mouse model of PD. The data suggest that if caffeine protects against putative toxin-induced dopaminergic neuron injury in humans, then precise temporal pairing between caffeine and toxin exposures may not be critical because the duration of neuroprotection by caffeine may be extended by protective effects of its major metabolites. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据