4.5 Article

THE NEUROPROTECTIVE EFFECTS OF FIBRONECTIN MATS AND FIBRONECTIN PEPTIDES FOLLOWING SPINAL CORD INJURY IN THE RAT

期刊

NEUROSCIENCE
卷 168, 期 2, 页码 523-530

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2010.03.040

关键词

fibronectin; spinal cord injury; neuroprotection; implant

资金

  1. BBSRC
  2. Biotechnology and Biological Sciences Research Council [BB/C513893/1] Funding Source: researchfish

向作者/读者索取更多资源

We have shown previously that mats made from the glycoprotein fibronectin are permissive for axonal growth when implanted into the injured spinal cord. Recent evidence has indicated that fibronectin and its peptides also have neuroprotective effects in the CNS. We have therefore examined the neuroprotective effects of fibronectin applied to a spinal cord injury site. Adult rats with fibronectin mats implanted into a spinal cord lesion cavity had decreased apoptosis in the intact adjoining spinal cord tissue at 1 and 3 days post-injury compared to rats that had gelfoam implanted into the lesion cavity. Rats with fibronectin mat implants also showed enhanced hindlimb locomotor performance for the first 3 weeks post-surgery compared to control animals. To further examine the neuroprotective potential of fibronectin following spinal cord injury, we examined the effects of placing fibronectin mats over the site of a spinal cord hemisection or of delivering a solution derived from a dissolved fibronectin mat. The effects of these treatments were compared with control animals and animals that were treated with a fibronectin peptide (PRARIY) that has been shown to decrease secondary damage in a rodent model of cerebral ischemia. Results showed that both types of fibronectin mat treatment resulted in decreased lesion size, apoptosis, and axonal damage within the first week post-injury compared to control animals and were comparable in their neuroprotective efficacy to treatment with the fibronectin peptide. The results of the current study indicate that fibronectin based biomaterials have neuroprotective effects following spinal cord injury, in addition to their previously reported ability to promote axonal regeneration. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据