4.7 Article

Proline Affects Brain Function in 22q11DS Children with the Low Activity COMT158 Allele

期刊

NEUROPSYCHOPHARMACOLOGY
卷 34, 期 3, 页码 739-746

出版社

SPRINGERNATURE
DOI: 10.1038/npp.2008.132

关键词

22q11.2DS; endophenotype; proline; catechol-O-methyl transferase; smooth pursuit; prepulse inhibition

资金

  1. 2006 NARSAD Young Investigator Award
  2. Stephen and Constance Lieber

向作者/读者索取更多资源

The association between the 22q11.2 deletion syndrome (22q11DS) and psychiatric disorders, particularly psychosis, suggests a causal relationship between 22q11DS genes and abnormal brain function. The genes catechol-O-methyl-transferase (COMT) and proline dehydrogenase both reside within the commonly deleted region of 22q11.2. COMT activity and proline levels may therefore be altered in 22q11DS individuals. Associations of both COMT158 genotype and elevated serum proline levels with abnormal brain function have been reported. Fifty-six 22q11DS children and 75 healthy controls were assessed on physiological measures of brain function, including prepulse inhibition (PPI) of startle, P50 auditory sensory gating and smooth pursuit eye movements (SPEM). COMT158 genotype and plasma proline levels were determined in the 22q11DS children. We hypothesized an interaction between the COMT158 genotype and proline, predicting the strongest negative effect of high proline on brain function to occur in 22q11DS children who are carriers of the COMT met allele. Of the three physiological measures, only SPEM and PPI were abnormal in the patient sample. With regard to the SPEM performance, there was a significant interaction between the COMT158 genotype and proline level with significantly decreased SPEM performance in children with high plasma proline levels and the low activity COMT met allele. A similar interaction effect was not observed with regard to PPI. These findings are consistent with a model in which elevated proline negatively affects brain function by an increase in dopamine in the prefrontal cortex. 22q11DS patients with low dopamine catabolic capacity are therefore especially vulnerable to this functional disruption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据