4.5 Article

Contrasting brain activity patterns for item recognition memory and associative recognition memory: Insights from immediate-early gene functional imaging

期刊

NEUROPSYCHOLOGIA
卷 50, 期 13, 页码 3141-3155

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropsychologia.2012.05.018

关键词

c-fos; Hippocampus; Perirhinal cortex; Recency; Spatial learning; zif268

资金

  1. Wellcome Trust [087855]
  2. Medical Research Council [G0401403] Funding Source: researchfish
  3. MRC [G0401403] Funding Source: UKRI

向作者/读者索取更多资源

Recognition memory, the discrimination of a novel from a familiar event, can be classified into item recognition and associative recognition. Item recognition concerns the identification of novel individual stimuli, while associative recognition concerns the detection of novelty that arises when familiar items are reconfigured in a novel manner. Experiments in rodents that have mapped the expression of immediate-early genes, e.g., c-fos, highlight key differences between these two forms of recognition memory. Visual item novelty is consistently linked to increased c-fos activity in just two brain sites, the perirhinal cortex and the adjacent visual association area Te2. Typically there are no hippocampal c-fos changes. In contrast, visual associative recognition is consistently linked to c-fos activity changes in the hippocampus, but not the perirhinal cortex. The lack of a c-fos perirhinal change with associative recognition presumably reflects the fact that the individual items in an array remain familiar, even though their combinations are unique. Those exceptions, when item recognition is associated with hippocampal c-fos changes, occur when rats actively explore novel objects. The increased engagement with objects will involve multisensory stimulus processing and potentially create conditions in which rats can readily learn stimulus attributes such as object location or object order, i.e., attributes involved in associative recognition. Correlations based on levels of immediate-early gene expression in the temporal lobe indicate that actively exploring novel stimuli switches patterns of entorhinal-hippocampal functional connectivity to emphasise direct entorhinal-dentate gyrus processing. These gene activity findings help to distinguish models of medial temporal lobe function. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据