4.5 Review

A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism

期刊

NEUROPSYCHOLOGIA
卷 46, 期 13, 页码 3144-3156

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropsychologia.2008.07.011

关键词

Parkinson's disease; Working memory; Reward; Dopamine; Neurocomputational models

向作者/读者索取更多资源

Parkinson's disease (PD) patients exhibit cognitive deficits, including reinforcement learning, working memory (WM) and set shifting. Computational models of the basal ganglia-frontal system posit similar mechanisms for these deficits in terms of reduced dynamic range of striatal dopamine (DA) signals in both medicated and non-medicated states. Here, we report results from the first study that tests PD patients on and off dopaminergic medications in a modified version of the AX continuous performance (AX-CPT) working memory task, consisting of three performance phases and one phase requiring WM associations to be learned via reinforcement feedback. Patients generally showed impairments relative to controls. Medicated patients showed deficits specifically when having to ignore distracting stimuli during the delay. Our models suggest that this impairment is due to medication causing excessive WM updating by enhancing striatal Go signals that facilitate such updating, while concurrently suppressing NoGo signals. In contrast, patients off medication showed deficits consistent with an overall reduction in striatal DA and associated Go updating signals. Supporting this dichotomy, patients on and off medication both showed attentional shifting deficits, but for different reasons. Deficits in non-medicated patients were consistent with an inability to update the new attentional set, whereas those in medicated patients were evident when having to ignore distractors that had previously been task relevant. Finally, in the feedback-based WM phase, medicated patients were better than unmedicated patients, suggesting a key role of striatal DA in using feedback to update information into WM. These results lend further insight into the role of basal ganglia dopamine in WM and broadly support predictions from neurocomputational models. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据