4.7 Article

Exogenous BDNF facilitates strategy set-shifting by modulating glutamate dynamics in the dorsal striatum

期刊

NEUROPHARMACOLOGY
卷 75, 期 -, 页码 312-323

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2013.07.033

关键词

BDNF; Cognitive flexibility; Dorsal striatum; Glutamate

资金

  1. Brain and Behavior Research Foundation
  2. Pennsylvania Department of Health

向作者/读者索取更多资源

Brain-derived neurotrophic factor (BDNF) signaling via tropomyosin-related kinase B (trkB) receptors exerts modulatory effects on glutamatergic transmission, learning, memory and reward processing. Although the role of BDNF in the regulation of mnemonic and affective/motivational processes is well studied, whether this neurotrophin could also regulate executive functions is not known. In the present study, we assessed the effects of intrastriatal infusions on BDNF (1-100 ng/hemisphere) in mice performing an operant strategy set-shifting task that required the animals to eliminate a visual cue-based strategy and adopt a new egocentric spatial response strategy to achieve rewards. Exogenous BDNF administration facilitated the acquisition of strategy shifting by minimizing response perseveration to the previously acquired strategy and this effect resemble an inverted-U shaped dose response pattern. Faster acquisition of strategy switching in BDNF-infused animals was dependent upon the activation of striatal trkB receptors. Moreover, activation of mGluR2/3 receptors by the selective group II metabotropic receptor agonist LY379268 abolished BDNF-induced cognitive enhancement suggesting the involvement of presynaptic glutamatergic. activity. Assessment of striatal glutamate dynamics using electrochemical recordings indicated that local application of BDNF directly induces glutamate release by activating presynaptic trkB receptors on glutamatergic terminals, and this effect followed a bell-shaped dose response pattern similar to strategy shifting performance. These data suggest that activation of BDNF-trkB signaling in the dorsal striatum improves strategy switching by effectively minimizing response conflicts, and this effect primarily involves facilitation of glutamatergic transmission. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据