4.2 Article

Fibrin matrix provides a suitable scaffold for bone marrow stromal cells transplanted into injured spinal cord: A novel material for CNS tissue engineering

期刊

NEUROPATHOLOGY
卷 29, 期 3, 页码 248-257

出版社

WILEY
DOI: 10.1111/j.1440-1789.2008.00971.x

关键词

bone marrow stromal cell; fibrin; scaffold; spinal cord injury; tissue engineering

资金

  1. Ministry of Education, Science and Culture of Japan [15390426, 17390389, 18390387, 19390371]
  2. Grants-in-Aid for Scientific Research [15390426, 17390389, 19390371, 18390387] Funding Source: KAKEN

向作者/读者索取更多资源

Recent basic experiments have strongly suggested that cell transplantation therapy may promote functional recovery in patients with spinal cord injury (SCI). However, a safe and efficient transplantation technique still remains undetermined. This study, therefore, was aimed to clarify whether fibrin matrix could be a useful scaffold in bone marrow stromal cell (BMSC) transplantation for the injured spinal cord. To clarify the issue, three-dimensional structure of fibrin matrix was assessed and the green fluorescent protein (GFP)-expressing BMSC were cultured in fibrin matrix. The rats were subjected to spinal cord hemisection at T8 level, and the vehicle, BMSC or BMSC-fibrin matrix construct was implanted into the cavity. Neurologic function was serially evaluated. Using immunohistochemistry, we evaluated the survival, migration and differentiation of the transplanted cells at 4 weeks after transplantation. In the initial in vitro study, the BMSC could survive in fibrin matrix for 2 weeks. The animals treated with the BMSC-fibrin matrix construct showed significantly more pronounced recovery of neurologic function than vehicle- or BMSC-treated animals. Fibrin scaffold markedly improved the survival and migration of the transplanted cells. There was no significant difference in the percentage of cells doubly positive for GFP and microtubule-associated protein 2 between the animals treated with BMSC-fibrin matrix construct and those treated with BMSC, but a certain subpopulation of GFP-positive cells morphologically simulated the neurons in the animals treated with BMSC-fibrin matrix construct. These findings strongly suggest that fibrin matrix may be one of the promising candidates for a potential, minimally invasive scaffold for injured spinal cord, and that such strategy of tissue engineering could be a hopeful option in regeneration therapy for patients with SCI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据