4.8 Article

A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule

期刊

NEURON
卷 80, 期 1, 页码 184-197

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2013.07.036

关键词

-

资金

  1. Lab Ex CORTEX [ANR-11-LABX-0042]
  2. NIH [R01-MH-60974]
  3. [FP6-2005 IST-1583]
  4. [FP7-2007 ICT-216593]
  5. [ANR-11-BSV4-501]
  6. [HDTRA 1-09-1-0039]
  7. [FP7-PEOPLE-2011-IIF-299915]

向作者/读者索取更多资源

Recent advances in neuroscience have engendered interest in large-scale brain networks. Using a consistent database of cortico-cortical connectivity, generated from hemisphere-wide, retrograde tracing experiments in the macaque, we analyzed interareal weights and distances to reveal an important organizational principle of brain connectivity. Using appropriate graph theoretical measures, we show that although very dense (66%), the interareal network has strong structural specificity. Connection weights exhibit a heavy-tailed lognormal distribution spanning five orders of magnitude and conform to a distance rule reflecting exponential decay with interareal separation. A single-parameter random graph model based on this rule predicts numerous features of the cortical network: (1) the existence of a network core and the distribution of cliques, (2) global and local binary properties, (3) global and local weight-based communication efficiencies modeled as network conductance, and (4) overall wire-length minimization. These findings underscore the importance of distance and weight-based heterogeneity in cortical architecture and processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据