4.8 Article

Mechanism of ER Stress-Induced Brain Damage by IP3 Receptor

期刊

NEURON
卷 68, 期 5, 页码 865-878

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2010.11.010

关键词

-

资金

  1. Research Resource Center at the RIKEN BSI
  2. JST
  3. Center for Integrated Brain Medical Science
  4. Ministry of Education, Culture, Sports, Science and Technology, Japan

向作者/读者索取更多资源

Deranged Ca2+ signaling and an accumulation of aberrant proteins cause endoplasmic reticulum (ER) stress, which is a hallmark of cell death implicated in many neurodegenerative diseases. However, the underlying mechanisms are elusive. Here, we report that dysfunction of an ER-resident Ca2+ channel, inositol 1,4,5-trisphosphate receptor (IP3R), promotes cell death during ER stress. Heterozygous knockout of brain-dominant type1 IP3R (IP(3)R1) resulted in neuronal vulnerability to ER stress in vivo, and IP(3)R1 knockdown enhanced ER stress-induced apoptosis via mitochondria in cultured cells. The IP(3)R1 tetrameric assembly was positively regulated by the ER chaperone GRP78 in an energy-dependent manner. ER stress induced IP(3)R1 dysfunction through an impaired IP(3)R1-GRP78 interaction, which has also been observed in the brain of Huntington's disease model mice. These results suggest that IP(3)R1 senses ER stress through GRP78 to alter the Ca2+ signal to promote neuronal cell death implicated in neurodegenerative diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据