4.8 Article

The Endocannabinoid 2-Arachidonoylglycerol Produced by Diacylglycerol Lipase α Mediates Retrograde Suppression of Synaptic Transmission

期刊

NEURON
卷 65, 期 3, 页码 320-327

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2010.01.021

关键词

-

资金

  1. Strategic Research Program for Brain Sciences
  2. MEXT, Japan
  3. [17023021]
  4. [21220006]
  5. [18-08582]
  6. [20-04030]
  7. [17023001]

向作者/读者索取更多资源

Endocannabinoids are released from postsynaptic neurons and cause retrograde suppression of synaptic transmission. Anandamide and 2-arachidonoylglycerol (2-AG) are regarded as two major endocannabinoids. To determine to what extent 2-AG contributes to retrograde signaling, we generated and analyzed mutant mice lacking either of the two 2-AG synthesizing enzymes diacylglycerol lipase alpha (DGL alpha) and beta (DGL beta). We found that endocannabinoid-mediated retrograde synaptic suppression was totally absent in the cerebellum, hippocampus, and striatum of DGL alpha knockout mice, whereas the retrograde suppression was intact in DGL beta knockout brains. The basal 2-AG content was markedly reduced and stimulus-induced elevation of 2-AG was absent in DGL alpha knockout brains, whereas the 2-AG content was normal in DGL beta knockout brains. Morphology of the brain and expression of molecules required for 2-AG production other than DGLs were normal in the two knockout mice. We conclude that 2-AG produced by DGL alpha, but not by DGL beta, mediates retrograde suppression at central synapses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据