4.8 Article

Decoupling through synchrony in neuronal circuits with propagation delays

期刊

NEURON
卷 58, 期 1, 页码 118-131

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2008.01.036

关键词

-

资金

  1. NIMH NIH HHS [R01 MH082942] Funding Source: Medline

向作者/读者索取更多资源

The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. Here we show that when recurrent networks with conduction delays exhibit population bursts, STDP rules exert a strong decoupling force that desynchronizes activity. Conversely, when activity in the network is random, the same rules can have a coupling and synchronizing influence. The presence of these opposing forces promotes the self-organization of spontaneously active neuronal networks to a state at the border between randomness and synchrony. The decoupling force of STDP may be engaged by the synchronous bursts occurring in the hippocampus during slow-wave sleep, leading to the selective erasure of information from hippocampal circuits as memories are established in neocortical areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据