4.7 Article

Biogenic synthesis of SnO2 nanoparticles: Evaluation of antibacterial and antioxidant activities

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2014.06.131

关键词

Tin oxide; Saraca indica; Absorption band edge; Photoluminescence; Antibacterial activity; DPPH

向作者/读者索取更多资源

Nanostructured semiconductors have been of special interest to scientific community due to their peculiar properties. The quantum size effect results in spectacular variation in the optical and vibrational characteristics of nanostructured materials compared to their bulk counterparts. The present work emphasizes an unexploited, cost effective, and environmentally benign method of synthesizing bioactive tin oxide nanoparticles of size from 2.1 nm to 4.1 nm using Saraca indica flower. The XRD pattern and HRTEM images of the samples revealed an increase in particle size with annealing temperature. Fine tuning band gap could be attained as evidenced by the shift of absorption band edge and photoluminescence emission. It is found that oxygen vacancies play an important role on PL emission. The synthesized nanoparticles exhibit antibacterial activity against gram negative bacteria Escherichia coli. The antioxidant activity is evaluated by scavenging free radicals of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH). The efficiency of biogenic SnO2 nanoparticles as a promising antibacterial agent as well as an antioxidant for pharmaceutical applications is suggested. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据