4.8 Review

New concepts in synaptic biology derived from single-molecule imaging

期刊

NEURON
卷 59, 期 3, 页码 359-374

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2008.06.022

关键词

-

向作者/读者索取更多资源

Single-molecule approaches give access to the full distribution of molecule behaviors and overcome the averaging intrinsic to bulk measurement methods. They allow access to complex processes where a given molecule can have heterogeneous properties over time. Recent developments in single-molecule imaging technologies have been followed by their wide application in cellular biology and are leading to the unraveling of new mechanisms related to molecular movements. They are shaping new concepts in the dynamic equilibria of complex biological macromolecular assemblies such as synapses. These advances were made possible thanks to improvements in visualization approaches combined with new strategies to label proteins with nanoprobes. In this primer, we will review the different approaches used to track single molecules in live neurons, compare them to bulk measurements, and discuss the different concepts that have emerged from their application to synaptic biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据