4.7 Article

Phylogeny of cultivated and wild wheat species using ATR-FTIR spectroscopy

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2014.07.025

关键词

Aegilops; Triticum; ATR-FITR; Phylogenetic; PCA

向作者/读者索取更多资源

Within the last decade, an increasing amount of genetic data has been used to clarify the problems inherent in wheat taxonomy. The techniques for obtaining and analyzing these data are not only cumbersome, but also expensive and technically demanding. In the present study, we introduce infrared spectroscopy as a method for a sensitive, rapid and low cost phylogenetic analysis tool for wheat seed samples. For this purpose, 12 Triticum and Aegilops species were studied by Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy. Hierarchical cluster analysis and principal component analysis clearly revealed that the lignin band (1525-1505 cm(-1)) discriminated the species at the genus level. However, the species were clustered according to their genome commonalities when the whole spectra were used (4000-650 cm(-1)). The successful differentiation of Triticum and its closely related genus Aegilops clearly demonstrated the power of ATR-FTIR spectroscopy as a suitable tool for phylogenetic research. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据