4.7 Article

T2*and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation

期刊

NEUROLOGY
卷 70, 期 18, 页码 1614-1619

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1212/01.wnl.0000310985.40011.d6

关键词

-

资金

  1. NCRR NIH HHS [UL1 RR024140 01] Funding Source: Medline
  2. NEI NIH HHS [R01 EY012353, R01 EY012353-09] Funding Source: Medline
  3. NICHD NIH HHS [R01 HD050832, R01 HD050832-01A1] Funding Source: Medline

向作者/读者索取更多资源

Background: Neurodegeneration with brain iron accumulation (NBIA) defines a group of genetic disorders characterized by brain iron deposition and associated with neuronal death. The known causes of NBIA include pantothenate kinase-associated neurodegeneration (PKAN), neuroferritinopathy, infantile neuroaxonal dystrophy (INAD), and aceruloplasminemia. Objective: To define the radiologic features of each NBIA subtype. Methods: Brain MRIs from patients with molecularly confirmed PKAN (26 cases), neuroferritinopathy (21 cases), INAD (four cases), and aceruloplasminemia (10 cases) were analyzed blindly to delineate patterns of iron deposition and neurodegeneration. Results: In most cases of PKAN, abnormalities were restricted to globus pallidus and substantia nigra, with 100% having an eye of the tiger sign. In a minority of PKAN cases there was hypointensity of the dentate nuclei (1/5 on T2* sequences, 2/26 on fast spin echo [FSE]). In INAD, globus pallidus and substantia nigra were involved on T2* and FSE scans, with dentate involvement only seen on T2*. By contrast, neuroferritinopathy had consistent involvement of the dentate nuclei, globus pallidus, and putamen, with confluent areas of hyperintensity due to probable cavitation, involving the pallida and putamen in 52%, and a subset having lesions in caudate nuclei and thalami. More uniform involvement of all basal ganglia and the thalami was typical in aceruloplasminemia, but without cavitation. Conclusions: In the majority of cases, different subtypes of neurodegeneration associated with brain iron accumulation can be reliably distinguished with T2* and T2 fast spin echo brain MRI, leading to accurate clinical and subsequent molecular diagnosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据