4.7 Article

Metastable neural dynamics in Alzheimer's disease are disrupted by lesions to the structural connectome

期刊

NEUROIMAGE
卷 183, 期 -, 页码 438-455

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2018.08.033

关键词

Alzheimer's disease; Metastability; Structural connectome; Whole-brain modelling; Kuramoto; DTI

资金

  1. Department for Employment and Learning Northern Ireland PhD studentship
  2. Science Foundation Ireland [11/RFP.1/NES/3194]
  3. Chaire d'Excellence Pierre de Fermat
  4. Davimos Family Endowment for Excellence in Science
  5. Alzheimer's Disease Neuroimaging Initiative (National Institutes of Health) [U01 AG024904]
  6. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  7. National Institute on Aging
  8. National Institute of Biomedical Imaging and Bioengineering
  9. AbbVie
  10. Alzheimer's Association
  11. Alzheimer's Drug Discovery Foundation
  12. Araclon Biotech
  13. BioClinica, Inc.
  14. Biogen
  15. Bristol-Myers Squibb Company
  16. CereSpir, Inc.
  17. Cogstate
  18. Eisai Inc.
  19. Elan Pharmaceuticals, Inc.
  20. Eli Lilly and Company
  21. EuroImmun
  22. F. Hoffmann-La Roche Ltd
  23. Genentech, Inc.
  24. Fujirebio
  25. GE Healthcare
  26. IXICO Ltd.
  27. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  28. Johnson & Johnson Pharmaceutical Research & Development LLC.
  29. Lumosity
  30. Lundbeck
  31. Merck Co., Inc.
  32. Meso Scale Diagnostics, LLC.
  33. NeuroRx Research
  34. Neurotrack Technologies
  35. Novartis Pharmaceuticals Corporation
  36. Pfizer Inc.
  37. Piramal Imaging
  38. Servier
  39. Takeda Pharmaceutical Company
  40. Transition Therapeutics
  41. Canadian Institutes of Health Research
  42. Science Foundation Ireland (SFI) [11/RFP.1/NES/3194] Funding Source: Science Foundation Ireland (SFI)

向作者/读者索取更多资源

Current theory suggests brain regions interact to reconcile the competing demands of integration and segregation by leveraging metastable dynamics. An emerging consensus recognises the importance of metastability in healthy neural dynamics where the transition between network states over time is dependent upon the structural connectivity between brain regions. In Alzheimer's disease (AD) - the most common form of dementia - these couplings are progressively weakened, metastability of neural dynamics are reduced and cognitive ability is impaired. Accordingly, we use a joint empirical and computational approach to reveal how behaviourally relevant changes in neural metastability are contingent on the structural integrity of the anatomical connectome. We estimate the metastability of fMRI BOLD signal in subjects from across the AD spectrum and in healthy controls and demonstrate the dissociable effects of structural disconnection on synchrony versus metastability. In addition, we reveal the critical role of metastability in general cognition by demonstrating the link between an individuals cognitive performance and their metastable neural dynamic. Finally, using whole-brain computer modelling, we demonstrate how a healthy neural dynamic is conditioned upon the topological integrity of the structural connectome. Overall, the results of our joint computational and empirical analysis suggest an important causal relationship between metastable neural dynamics, cognition, and the structural efficiency of the anatomical connectome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据