4.7 Article

Structurally-informed Bayesian functional connectivity analysis

期刊

NEUROIMAGE
卷 86, 期 -, 页码 294-305

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2013.09.075

关键词

Functional connectivity; Structural connectivity; G-Wishart prior; Bayesian inference

资金

  1. Brain Gain Smart Mix Programme of the Netherlands Ministry of Economic Affairs
  2. Netherlands Ministry of Education, Culture and Science

向作者/读者索取更多资源

Functional connectivity refers to covarying activity between spatially segregated brain regions and can be studied by measuring correlation between functional magnetic resonance imaging (fMRI) time series. These correlations can be caused either by direct communication via active axonal pathways or indirectly via the interaction with other regions. It is not possible to discriminate between these two kinds of functional interaction simply by considering the covariance matrix. However, the non-diagonal elements of its inverse, the precision matrix, can be naturally related to direct communication between brain areas and interpreted in terms of partial correlations. In this paper, we propose a Bayesian model for functional connectivity analysis which allows estimation of a posterior density over precision matrices, and, consequently, allows one to quantify the uncertainty about estimated partial correlations. In order to make model estimation feasible it is assumed that the sparseness structure of the precision matrices is given by an estimate of structural connectivity obtained using diffusion imaging data. The model was tested on simulated data as well as resting-state fMRI data and compared with a graphical lasso analysis. The presented approach provides a theoretically solid foundation for quantifying functional connectivity in the presence of uncertainty. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据