4.7 Article

Coupling between visual alpha oscillations and default mode activity

期刊

NEUROIMAGE
卷 68, 期 -, 页码 112-118

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2012.11.058

关键词

Alpha oscillations; Default mode network; Simultaneous EEG-fMRI; Eyes-open; Eyes-closed

资金

  1. NIH [MH097320]

向作者/读者索取更多资源

Although, on average, the magnitude of alpha oscillations (8 to 12 Hz) is decreased in task-relevant cortices during externally oriented attention, its fluctuations have significant consequences, with increased level of alpha associated with decreased level of visual processing and poorer behavioral performance. Functional MRI signals exhibit similar fluctuations. The default mode network (DMN) is on average deactivated in cognitive tasks requiring externally oriented attention. Momentarily insufficient deactivation of DMN, however, is often accompanied by decreased efficiency in stimulus processing, leading to attentional lapses. These observations appear to suggest that visual alpha power and DMN activity may be positively correlated. To what extent such correlation is preserved in the resting state is unclear. We addressed this problem by recording simultaneous EEG-fMRI from healthy human participants under two resting-state conditions: eyes-closed and eyes-open. Short-time visual alpha power was extracted as time series, which was then convolved with a canonical hemodynamic response function (HRF), and correlated with blood-oxygen-level-dependent (BOLD) signals. It was found that visual alpha power was positively correlated with DMN BOLD activity only when the eyes were open; no such correlation existed when the eyes were closed. Functionally, this could be interpreted as indicating that (1) under the eyes-open condition, strong DMN activity is associated with reduced visual cortical excitability, which serves to block external visual input from interfering with introspective mental processing mediated by DMN, while weak DMN activity is associated with increased visual cortical excitability, which helps to facilitate stimulus processing, and (2) under the eyes-closed condition, the lack of external visual input renders such a gating mechanism unnecessary. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据