4.7 Article

Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism?

期刊

NEUROIMAGE
卷 54, 期 4, 页码 2789-2807

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2010.10.070

关键词

Susceptibility mapping; Brain iron; Myelin; MR phase; SHARP

资金

  1. Carl Zeiss Foundation
  2. German Research Foundation [RE 1123/9-1]

向作者/读者索取更多资源

Quantitative susceptibility mapping (QSM) based on gradient echo (GRE) magnetic resonance phase data is a novel technique for non-invasive assessment of magnetic tissue susceptibility differences. The method is expected to be an important means to determine iron distributions in vivo and may, thus, be instrumental for elucidating the physiological role of iron and disease-related iron concentration changes associated with various neurological and psychiatric disorders. This study introduces a framework for QSM and demonstrates calculation of reproducible and orientation-independent susceptibility maps from GRE data acquired at 3T. The potential of these susceptibility maps to perform anatomical imaging is investigated, as well as the ability to measure the venous blood oxygen saturation level in large vessels, and to assess the local tissue iron concentration. In order to take into account diamagnetic susceptibility contributions induced by myelin, a correction scheme for susceptibility based iron estimation is demonstrated. The findings suggest that susceptibility contrast, and therewith also phase contrast, are not only linked to the storage iron concentration but are also significantly influenced by other sources such as myelin. After myelin correction the linear dependence between magnetic susceptibilities and previously published iron concentrations from post mortem studies was significantly improved. Finally, a comparison between susceptibility maps and processed phase images indicated that caution should be exercised when drawing conclusions about iron concentrations when directly assessing processed phase information. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据