4.7 Article

Frontal phasic and oscillatory generators of the N30 somatosensory evoked potential

期刊

NEUROIMAGE
卷 54, 期 2, 页码 1297-1306

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2010.08.060

关键词

-

资金

  1. Belgian Federal Science Policy Office
  2. European Space Agency [AO-2004, 118]
  3. Belgian National Fund for Scientific Research (FNRS)
  4. Universite Libre de BruxellesUniversite de Mons-Hainaut (Belgium)
  5. FEDER
  6. European Commission [FP7-2007-2013]
  7. PRODEX fellowship

向作者/读者索取更多资源

The N30 component of somatosensory evoked potentials has been recognized as a crucial index of brain sensorimotor processing and has been increasingly used clinically. Previously, we have shown that the N30 is accompanied by both an increase of the power spectrum of the ongoing beta-gamma EEG (event related synchronization. ERS) and by a reorganization (phase-locking) of the spontaneous phase of this rhythm (inter-trials coherency, ITC). In order to localize its sources taking into account both the phasic and oscillatory aspects of the phenomenon, we here apply swLORETA methods on averaged signals of the event-related potential (ERP) from a 128 scalp-electrodes array in time domain and also on raw EEG signals in frequency domain at the N30 peak latency. We demonstrate that the two different mechanisms that generate the N30 component power increase (ERS) and phase locking (ITC) across EEG trials are spatially localized in overlapping areas in the precentral cortex, namely the motor cortex (BA4) and the premotor cortex (BA6). From this common region, the generator of the N30 event-related potential expands toward the posterior part of BA4, the anterior part of BA6 and the prefrontal cortex (BA9). These latter areas also present significant ITC sources in the beta-gamma frequency range, but without significant power increase of this rhythm. This demonstrates that N30 results from network activity that depends on distinct oscillating and phasic generators localized in the frontal cortex. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据