4.7 Article

Transcranial direct current stimulation in patients with skull defects and skull plates: High-resolution computational FEM study of factors altering cortical current flow

期刊

NEUROIMAGE
卷 52, 期 4, 页码 1268-1278

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2010.04.252

关键词

tDCS; TBI; Skull defects; Skull plates; Finite element modeling; MRI human head model

资金

  1. CIMIT (Center for Integration of Medicine and Innovative Technology)
  2. NIH [S06GM008168, NS054783]
  3. Wallace H. Coulter Foundation

向作者/读者索取更多资源

Preliminary positive results of transcranial direct current stimulation (tDCS) in enhancing the effects of cognitive and motor training indicate that this technique might also be beneficial in traumatic brain injury or patients who had decompressive craniectomy for trauma and cerebrovascular disease. One perceived hurdle is the presence of skull defects or skull plates in these patients that would hypothetically alter the intensity and location of current flow through the brain. We aimed to model tDCS using a magnetic resonance imaging (MRI)-derived finite element head model with several conceptualized skull injuries. Cortical electric field (current density) peak intensities and distributions were compared with the healthy (skull intact) case. The factors of electrode position (C3-supraorbital or O1-supraorbital), electrode size skull defect size, skull defect state (acute and chronic) or skull plate (titanium and acrylic) were analyzed. If and how electric current through the brain was modulated by defects was found to depend on a specific combination of factors. For example, the condition that led to largest increase in peak cortical electric field was when one electrode was placed directly over a moderate sized skull defect. In contrast, small defects midway between electrodes did not significantly change cortical currents. As the conductivity of large skull defects/plates was increased (chronic to acute to titanium), current was shunted away from directly underlying cortex and concentrated in cortex underlying the defect perimeter. The predictions of this study are the first step to assess safety of transcranial electrical therapy in subjects with skull injuries and skull plates. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据